of the protons on C'(6) straddle the O(5^I)–C(5^I) bond. The other proton is located then between the methylene protons of C(5^I) and directed towards C(6^{IV}). A similar meshing of the C(6) protons with the O'(5)–C'(5) bond and the methylene protons of C'(5) is necessary to account for the short distances of 3·39 Å and 3·75 Å between C(6^{IV}) and O'(5) and C'(5). If this arrangement of the methyl protons is basically correct, then the approach distance between C'(6) and C(6^{II}), and C'(6) and C(6^{II}), should be approximately 4·4 Å and 3·7 Å, if the proton van der Waals radius is taken as 1·2 Å. The observed distances are 4·11 Å and 3·62 Å respectively.

The authors gratefully acknowledge the use of the crystallographic programs written by Drs P.J.Wheatley, J.J.Daly and J.A.Wunderlich. They wish to thank also Mr J.Fridrichsons for his assistance with the experimental work.

References

- BISHOP, C. T. (1953). Canad. J. Chem. 31, 793.
- BROWN, C. J. (1960). Acta Cryst. 13, 1049.
- BROWN, C. J. (1965). Private communication. To be submitted to J. Chem. Soc.
- BROWN, G. M. & LEVY, H. A. (1965). Science, 147, 1038.

- CRUICKSHANK, D. W. J., PILLING, D. E., BUJOSA, A., LOV-ELL, F. M. & TRUTER, M. R. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis, p. 32. Symposia Publications Division, Pergamon Press.
- DAWSON, B. (1960). Acta Cryst. 13, 403.
- FERRIER, W. G. (1963). Acta Cryst. 16, 1023.
- FREEMAN, A. J. (1959). Acta Cryst. 12, 261.
- HOERNI, J. A. & IBERS, J. A. (1954). Acta Cryst. 7, 744.
- HORDVIK, A. (1961). Acta Chem. Scand. 15, 16.
- Howells, E. R., Phillips, D. C. & Rogers, D. (1950). Acta Cryst. 3, 210.
- JACOBSON, R. A., WUNDERLICH, J. A. & LIPSCOMB, W. N. (1961). Acta Cryst. 14, 598.
- JEFFREY, G. A. & ROSENSTEIN, R. D. (1964). Advanc. Carb. Chem. 19, 7.
- JONES, D. W. (1960). J. Polymer Sci. 42, 173.
- LEMIEUX, R. U. & SHYLUK, W. P. (1953). Canad. J. Chem. 31, 528.
- MANN, J. (1962). Pure Appl. Chem. 5, 91.
- McDonald, T. R. R. & Beevers, C. A. (1952). Acta Cryst. 5, 654.
- MICHELL, A. J. (1965). Private communication.
- PAULING, L. (1960). The Nature of the Chemical Bond. 3rd Ed. Birmingham: Kynoch Press.
- REEVES, R. E. (1951). Advanc. Carb. Chem. 6, 107.
- TIMELL, T. E. (1964). Advanc. Carb. Chem. 19, 247.
- WILSON, A. J. C. (1949). Acta Cryst. 2, 318.
- WILSON, A. J. C. (1951). Research, 4, 141.
- YUNDT, A. P. (1951). Tappi, 34, 89.

Acta Cryst. (1966). 21, 79

Crystal and Molecular Structure of L-a-Glycerylphosphorylcholin

By Sixten Abrahamsson and Irmin Pascher

Crystallography Group, Institute of Medical Biochemistry, University of Göteborg, Sweden

(Received 7 October 1965)

The crystal structure of L- α -glycerylphosphorylcholin – the basic unit of the lecithins – has been determined and refined to an R value of 0.062 by anisotropic least-squares treatment.

Introduction

Our X-ray studies of lipids in the solid state have been undertaken to contribute to the knowledge of the structure of important biological systems with partly ordered lipid molecules such as cell membranes and the myelin sheath of nerves. Phosphatides with zwitterion structure (lecithins, cephalins, sphingomyelins) are important components in such systems. In order to obtain accurate structural information on the polar regions in the lecithins, we have performed a singlecrystal analysis of the basic unit, glycerylphosphorylcholin (GPC).

Experimental

Optically active L- α -GPC ($C_8H_{20}O_6NP$) was synthesized according to Baer & Kates (1948). The compound was

purified by four recrystallizations of its $CdCl_2$ complex. GPC was recovered by dissolving the complex in water and passing the solution through an ion exchanger (Tattrie & McArthur, 1958) and finally dried in vacuum over phosphorus pentoxide.

Crystals of GPC were obtained from ethanol (99.5%). They grow in long prisms and are often twinned. As GPC is very hygroscopic the crystals had to be handled in a water-free atmosphere and mounted in glass capillaries for the X-ray work.

The crystals are monoclinic $(P2_1)$ with the following cell dimensions (Cu K α radiation): $a=10\cdot10$, $b=7\cdot71$, $c=16\cdot62$ Å, $\beta=102\cdot7^{\circ}$.

A reasonable value for the calculated density of the crystals, 1.320 g.cm^{-3} , is obtained if there are four molecules per cell. The Patterson series also conforms with two molecules per asymmetric unit.

Table 1. Fractional atomic coordinates with standard deviations $\times 10^5$ (within brackets) for the heavier atoms of the structure

	x	$\sigma(x)$	у	$\sigma(y)$	Z	$\sigma(z)$
P(1)	0.75618	(14)	0.50164	(45)	0.07638	(10)
N(1)	1.17855	(47)	0.46781	(95)	0.12375	(27)
O(1)	0.36688	(34)	0.91207	(84)	0.14787	(22)
O(2)	0.71364	(35)	1.02920	(85)	0.12976	(23)
0(3)	0.68363	(38)	0.68369	(80)	0.05967	(25)
O(4)	0.88628	(37)	0.53917	(84)	0.15116	(21)
O(5)	0.67329	(42)	0.37357	(92)	0.11188	(30)
O(6)	0.80209	(38)	0.45962	(77)	-0.00003	(24)
C (1)	0.49754	(54)	0.99843	(122)	0.16559	(35)
C(2)	0.58712	(50)	0.93828	(109)	0.10709	(32)
C(3)	0.61784	(54)	0.74153	(127)	0.11985	(35)
C(4)	0.98227	(58)	0.66480	(118)	0.13862	(36)
C(5)	1.12703	(53)	0.60826	(106)	0.17234	(30)
C(6)	1.11141	(62)	0.29848	(108)	0.12782	(36)
C(7)	1.16462	(64)	0.52642	(136)	0.03370	(31)
C (8)	1.32862	(54)	0.44543	(134)	0.16279	(45)
P(1')	0.78699	(14)	0.77195	(35)	0.60243	(8)
N(1')	1.20830	(45)	0.84521	(100)	0.63007	(28)
O(1')	0.39722	(39)	0.36879	(83)	0.60716	(23)
O(2')	0.74924	(37)	0.23669	(73)	0.62904	(23)
O(3')	0.71735	(37)	0.58362	(63)	0.59421	(19)
O(4')	0.92882	(36)	0.73692	(74)	0.66865	(21)
O(5')	0.71143	(38)	0.89129	(71)	0.64452	(23)
O(6')	0.81460	(35)	0.80981	(68)	0.52009	(21)
C(1')	0.51099	(35)	0.30496	(103)	0.57736	(33)
C(2')	0.63732	(52)	0.32404	(87)	0.64726	(30)
C(3')	0.68024	(50)	0.50816	(105)	0.66657	(28)
C(4')	1.02850	(56)	0.62383	(103)	0.64619	(38)
C(5')	1.17216	(53)	0.69586	(105)	0.67766	(34)
C(6')	1.12992	(65)	1.00917	(121)	0.63900	(40)
C(7′)	1.18714	(83)	0.80890	(144)	0.54095	(40)
C(8′)	1.35720	(67)	0.88858	(164)	0.66630	(55)

Table 2. U_{ij} 's together with standard deviations (x10⁴) within brackets

Allowance was made for anisotropic vibration with

	$\exp - 2\pi^2 (h^2 a^{*2})$.	$U_{11} + k^2 b^{*2}$. $U_{22} + k^2 b^{*2}$	$-l^2c^{*2}$. $U_{33}+2$	$kl \cdot b^*c^* \cdot U_{23} + 2lh$	$c^*a^* \cdot U_{31} + 2hk$	a^*b^* . U_{12})
	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
P(1)	0.0445 (7)	0.0352 (20)	0.0606 (8)	0.0003 (10)	0.0093 (6)	-0.0026 (10)
N(1)	0.0588 (24)	0.0381 (66)	0.0489 (23)	0.0073 (29)	0.0133 (18)	0.0079 (30)
O(1)	0.0527 (18)	0.0858 (49)	0.0571 (20)	0.0050 (25)	0.0217 (13)	0.0042 (24)
O(2)	0.0566 (19)	0.0299 (43)	0.0790 (20)	-0.0017 (25)	0.0231 (15)	-0.0025 (22)
O(3)	0.0545 (21)	0.0385 (45)	0.0709 (23)	0.0010 (24)	0.0178 (17)	0.0091 (21)
O(4)	0.0535 (19)	0.0504 (44)	0.0494 (18)	-0.0012 (24)	0.0089 (15)	-0.0003 (24)
O(5)	0.0653 (23)	0.0396 (56)	0.1084 (30)	0.0075 (32)	0.0245 (20)	0.0051 (30)
O(6)	0.0653 (21)	0.0435 (50)	0.0646 (21)	-0.0125(23)	0.0064 (16)	0.0023 (24)
C (1)	0.0584 (29)	0.0641 (71)	0.0719 (31)	0.0015 (40)	0.0234 (22)	0.0174(37)
C(2)	0.0533 (25)	0.0326 (64)	0.0590 (28)	0.0051 (35)	0.0198 (19)	-0.0060(31).
C(3)	0.0682 (28)	0.0436 (69)	0.0809(31)	0.0013(38)	0.0373(21)	-0.0073(36)
C(4)	0.0637 (32)	0.0239 (70)	0.0672(31)	-0.0137(37)	0.01/4 (24)	-0.0023(36)
C(5)	0.0593 (30)	0.0302 (67)	0.0430 (25)	-0.0114(30)	0.0063(21)	0.0019(33)
C(6)	0.0828 (34)	0.0187(66)	0.0652(31)	0.0005(36)	0.0245(24)	0.0011(36)
C(7)	0.1217(39)	0.0594 (69)	0.0417(25)	0.0015(35)	0.0319(23)	0.00/0 (45)
C(8)	0.0525 (28)	0.0772 (91)	0.0982(45)	0.0172(52)	0.0234(27)	0.0137(37)
P(1')	0.0482 (6)	0.0314(16)	0.0451(6)	0.0009(8)	0.0128(4)	-0.0023(9)
$\mathcal{H}(\Gamma)$	0.0610 (25)	0.0002 (62)	0.0201(24)	0.0165 (29)	0.0185 (19)	-0.0034(30)
0(1')) 0.0620 (22)	0.1248 (49)	0.0582 (20)	-0.0288 (26)	0.0145(15)	-0.0020(28)
O(2')) 0.0730 (20)	0.0310 (45)	0.0787 (21)	0.0061(25)	0.0334 (16)	0.0047(26)
O(3')) 0.0659 (21)	0.0357 (40)	0.0429 (16)	-0.0022(19)	0.0162(14)	-0.0122(21)
O(4′) 0.0599 (19)	0.0513 (42)	0.0510 (17)	-0.0005(22)	0.0127(14)	-0.0086(24)
O(5') 0.0813 (23)	0.0182 (44)	0.0795 (21)	-0.0024(24)	0.0320(16)	-0.0020(24)
O(6') 0.0545 (19)	0.0674 (45)	0.0587 (19)	0.0086(23)	0.0114(15)	-0.0058(22)
C(1')) 0.0664 (28)	0.0511 (64)	0.0599 (28)	-0.0117(33)	0.0187(21)	-0.0192(32)
C(2)	′ 0·0613 (29)	0.0310 (56)	0.0497 (24)	-0.0006(27)	0.0123(21)	-0.0036(28)
C(3') 0.0579 (26)	0.0481 (61)	0.0388 (22)	0.0058(31)	0.0160(18)	-0.0000(34)
C(4′) 0.0630 (30)	0.0408 (65)	0.0891 (35)	0.0215(37)	0.0131(27)	0.0028(36)
C(5') 0.0607 (28)	0.0528 (64)	0.0564 (30)	0.0264(32)	0.0040 (24)	-0.0026(31)
C (6') 0.0934 (40)	0.0538 (70)	0.0836(35)	0.0105(43)	0.0364 (29)	-0.0027(46)
C(7) 0·1461 (55)	0.0648 (95)	0.0642 (32)	0.0098 (45)	0.0392(33)	0.0126(50)
C(8	r) 0.0556 (35)	0.1569 (104)	0.1489 (56)	0.0621 (69)	0.0189 (36)	-0.0116 (21)

Multiple film Weissenberg photographs were recorded for the 0–4 layers about the b axis and the 0 and 2 layers about the c axis. The intensities were measured visually and corrected for the Lorentz and polarization factors but not for absorption.

Structure determination

A three-dimensional Patterson series was calculated with coefficients sharpened to correspond to those from point atoms at rest (Abrahamsson & Maslen, 1963). The positions of the two phosphorus atoms were easily derived from the series. They have different ycoordinates, and no false symmetry is introduced in the electron density series based on the phases of the two atoms. The series in fact showed most of the other atoms in the structure but only the highest peaks were used for the following stage. After four rounds of Fourier refinement all atoms except hydrogen atoms had been located and the R value was 0.20.

The structure was further refined by anisotropic least-squares treatment using the full matrix. The progress of the refinement was checked at some stages by calculating difference syntheses. In the first of these, 13 of the hydrogen atoms showed up distinctly and were included in the following structure factor calculations. Each hydrogen atom was assigned an isotropic temperature factor calculated from the anisotropic vibration parameters of the hydrogen-carrying heavier atom. The second difference series calculated at R=0.09 gave equally clearly the positions of the remaining hydrogen atoms except H(71'), H(73') and H(81') which, however, were included in the structure factor calculations with their expected coordinates as they belonged to CH₃ groups of which the other hydrogen atoms had been located from the difference maps. After six more least-squares cycles with all atoms of the molecule included the shifts were small (one-third of the standard deviations) and the refinement was stopped. The hydrogen parameters, however, had not been refined. As 289 parameters were varied simultaneously only the right hand sides of the normal equations matrix were calculated in some of the last cycles in order to reduce the computing time and the inverse matrix of an earlier stage was used for forming the shifts.

The final R value for the 1597 observed reflexions is 0.062. The scattering curves given in *International*

Tables for X-ray Crystallography (1962), p.202, were used. The calculations were performed on the Datasaab D21 computer with the program system developed by Abrahamsson, Aleby, Larsson, Nilsson, Selin & Westerdahl (1965). The weight used for each observation in the least-squares refinement was (Mills & Rollett, 1960)

$$w = \frac{1}{1 + [(|F_o| - 10|F_{\min}|)/4|F_{\min}|]^2}$$

Discussion

The atomic parameters used in the final calculation of structure factors are given with standard deviations in Tables 1–3. Observed and calculated structure factors are listed in Table 4. The numbering of atoms in the molecule is illustrated in Fig. 1. Primed symbols refer to the second molecule of the asymmetric unit.

The two molecules of the asymmetric unit are shown in Fig.2. Their conformation and orientation in the unit cell is such that one is roughly related to the other by a *c*-glide plane at y=0.13. As the molecule is optically active this relationship is, of course, not valid at

Table 3. Parameters for the hydrogen atoms

	x	У	z	В
H(1)	0.3300	0.8600	0.1000	4·84 Å2
H(2)	0.7200	1.1550	0.1200	4.07
H(11)	0.4812	0.8620	0.1586	5.02
H(12)	0.5491	0.9694	0.2288	5.02
H(21)	0.5331	0.9603	0.0430	3.89
H(31)	0.6827	0.7191	0.1807	4.81
H(32)	0.5233	0.6684	0.1149	4.81
H(41)	0.9640	0.7839	0.1698	3.72
H(42)	0.9680	0.6884	0.0729	3.72
H(51)	1.1345	0.5587	0.2349	3.12
H(52)	1.1926	0.7200	0.1742	3.12
H(61)	1.1297	0.2558	0.1920	3.34
H(62)	1.0027	0.3120	0.1034	3.34
H(63)	1.1530	0.2038	0.0916	3.34
H(71)	1.0575	0.5516	0.0065	5.21
H(72)	1.2229	0.6438	0.0323	5.21
H(73)	1.2013	0.4240	-0.0007	5.21
H(81)	1.3817	0.5680	0.1593	5.88
H(82)	1.3413	0.4081	0.2273	5.88
H(83)	1.3718	0.3455	0.1299	5.88
H(1')	0.3200	0.4400	0.5700	5.47
H(2')	0.7500	0.1100	0.6300	4.73
H(11')	0.4958	0.1682	0.5607	4.44
H(12')	0.5241	0.3787	0.5239	4.44
H(21')	0.6153	0.2659	0.7027	3.29
H(31')	0.5966	0.5806	0.6820	3.73
H(32')	0.7671	0.5104	0.7187	3.73
H(41')	1.0081	0.6103	0.5796	5.58
H(42')	1.0215	0.4958	0.6740	5.58
H(51')	1.2447	0.5907	0.6749	4.31
H(52')	1.1829	0.7358	0.7414	4.31
H(61')	1.0211	0.9854	0.6172	5.85
H(62')	1.1498	1.0479	0.7038	5.85
H(63')	1.1608	1.1133	0.6027	5.85
H(71')	1.2519	0.6999	0.5317	6.85
H(72')	1.0821	0.7770	0.5160	6.85
H(73')	1.2159	0.9231	0.2097	6.85
H(81')	1.3701	0.9219	0.7311	8.39
H(82')	1.4202	0.7766	0.6600	8.39
H(83')	1.3876	0.9983	0.6329	8.39

1

Table 4. Observed and calculated structure factors (x100) with phase angles (as fractions of one revolution)

	# L POBS	PCALC	71	н	K L	POBS	PCALC	*1	* • *	L	POBS	PCALC	P 1		н	× 1	P083	PCALO	PI
00000	0 3 2051 0 4 20710 0 6 4388 0 7 289 0 8 3983	19439 19439 1973	1,0000 1,0000 1,0000 1,0000	777	0000	530 681 290 670 1165	261 661 275 766 1201	1.3000 0.5000 0.5000 0.5000	· · · · · · · · · · · · · · · · · · ·	-12 -13 -15 -15	2728 353 682 782 1339	2868 536 762 849 1435	0.9577 0.7959 0.1788 0.8894 0.5453			-15	203 1042 635 1206	280 1037 606 1129	0.2977 0.5630 0.6865 0.7116
00000	0 9 798 0 10 778 0 11 1237 0 12 945 0 13 887	814 753 1233 1002 904	0,5000 0,5000 1,0000 1,0000	7 8 8	0 -16 0 0 0 1 0 2	477 475 1561 597 1470	506 476 1585 759 1472	1.0000 1.0000 0.5000 0.5000		-17 -18 -19 -20	428 525 501 687 1897	485 406 458 647	0.9456 0.6292 0.3225 0.1115 0.3262		·>>>0	7	349 584 555 791	415 494 470	0.8550 0.6836 0.9500 0.6451
0001	0 15 1462 0 16 370 0 17 898 0 1 1819	1485 492 516	0,0000 0,5000 0,0000 0,5000	5 5 8	50000	631 459 403 605	634 466 523 570	0.5000			2354 1640 3637 3421	2358 1601 3411 3221	0.4184 0.0063 0.5898 0.7588		10	4444	717 623 623	640 530 631 1215	0.5555 0.6305 0.7530 0.6535
1	0 3 2616 0 4 7499 0 5 2761 0 6 101	2880 6864 2897 575	1.0000 1.0000 1.0000	8 8 8	0000	1497 570 1146 808	1540 667 1194 781	0.5000 0.5000 1.0000 1.0000		7678 y	2975 1378 1294 1115	2755	0.5988 0.1168 0.1616 0.3625		10 10 10 10	1 -7	799 798 1306	729 747 400 1211	0.9548 0.5456 0.1275 0.1354
1	0 7 822 0 8 2106 0 9 825 0 10 1215 0 11 1085	717 2161 922 1247 1157	0.5000 0.5000 0.5000	888	0 -10 0 -12 0 -12	949 1008 1181 799 1415	987 989 1229 879	0.5000 0.5000 1.0000 1.0000		10	2037 569 260 444	2044 968 237 419 898	0.0820 0.6808 0.2089 0.5994		10 10 10	-11 -12 1 -13 1 -16	821 376 538 235	745	0.0923 0.6132 0.6455
1	0 13 1105 0 14 808 0 16 364 0 17 538 0 17 538	1154 949 377 637	0.5000 0.0000 1.0000 0.0000	8 9 9	0 -16	437 413 706 534	427 324 708 474	0.5000 1.0000 1.0000 0.0000 0.5000		16 17 -1	933 663 1830 350	810 565 1365 259	0.6844 0.9129 0.7711 0.9620		0 0 0 0		658 741 638	628 621 516 153	0.1501 0.3433 0.0746 0.6762
1	0 -2 7549 0 -3 329 0 -4 3287 0 -5 3798	6561 248 3446 3718	0.5000 0.9999 0.5000 0.5000	9990	00000	750 315 532 1045	710 423 465 1072	0.5000		11-507	2037 761 798 1355	1976 833 673 1453	0.5920				314 504 455 790	268 474 409 710	0.568
1	0 -8 3806 0 -9 1808 0 -11 1225 0 -12 155	3635 1765 1180 583	1.0000	9999	-7-6	573	465 467 716	0.5000 1.0000 1.0000		-10	1377 1537 1996	1486 1552 2016 599	0.6568 0.9336 0.7557 0.5967			767-80	350 769 751	334 10 727 701 407	0.2138 0.1510 0.1545 0.4521 0.4521
1	0 -14 1051 0 -15 745 0 -17 1070 0 -19 1070	1116 704 1154 432	0.5000	9 10 10	0 -16	656 254 256	592 614 198 606	0.5000		-15	1070 689 562 646	1129 665 555 586	0.6434 0.1961 0.3796 0.4576			-12 -13 -14	245 224 265 307	252 147 236 237	0.0542 0.335E 0.5355 0.1072
2222	0 1 440 0 2 9210 0 3 7461 0 4 1803	311 8525 7094 1627	0.5000 0.5000 0.5000 1.0000	10 10 10	00000	628 601 804 978	650 556 970	0.0000	5 1	-19 -20 0	634 334 1133 1651	601 404 586 1435	0.0862 0.5475 0.5235 0.5115 0.2216		2 1	2019	552 541 230 241 557	475 537 245 155	0.3664 0.3556 0.3581 0.5167 0.1150
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 6 2116 0 7 4082 0 8 1492 0 9 2033	2239 4221 1420 2191	1,0000 1,0000 0,5000 1,0000	10 10 10	50000 50000	976 738 815 1298 592	810 874 1360 645	1.0000 1.0000 1.0000 0.5000	5 1 5 1 5 1	2 34 56	3177 1779 1744 1609	3182 1809 1654 1673	0.0718 0.6097 0.0547 0.5973 0.6115		2 1 2 2 2 1	2444	355 314 7C1 473	292 26,4 603 472	0.25 2
2222	0 10 1889 0 11 2229 0 13 1684 0 14 755 0 -1 1020	1987 2360 1859 991	0.5000 0.5000 0.0000 1.0000	10 10 10	0 -10 0 -12 0 -13 0 -14	645 318 299 435 349	696 413 521 521	1,0000 0,5000 1,0000 0,5000 0,5000	5 1	78	717 555 511 581	572 565 512 571	0.5958 0.7360 0.7944 0.0293		2 1	-10	445 225 147 341	256	0.755E 0.933
	0 77 290 0 77 290 0 74 9251 2 201	133 242 5005 2584	0.5001 0.5001 1.0000 1.0000	11 11 11 11	00000	471 692 470 472	472 636 398 475	0.5000	5 1	12 13 14 152	625 488 554 351	572 859 871 225	0.2163 0.4149 0.1267 0.4130	i		***	574 9702 3552 4263	57252	6.6207 0.9014 0.7175 6.3163
*****	0 -8 2300 0 -9 481 0 -14 1125 0 -15 2614 0 -16 375	2215 411 1195 2741 164	0.5000 1.0000 0.5000 0.5000	11	0 -8 0 -8 0 -10	5082 358 359 369	871 457 428 573	0.0000 1.0000 0.5000 0.5000	551	11111	811 1508 575	854 1607 423 745	0.2535				7771	6767 5311 515,	C.1463 C.3,13 C.1461 C.103,
2223	0 -17 442 0 -18 499 0 -19 1105 0 1 3197 0 2 9414	509 589 1123	0.5000 1.0000 1.0000 1.0000 0.5000	11 12 12	0 -13 0 -13 0 -1	612 374 553 309	629 337 523	0.5000 1.0000 0.0000 0.0000	5 1 5 1	191-19 P	2625 576 1721 1626	2665 663 1763 1963	0.756E 0.7501 0.8616 0.6556			2345	2073 1535 2225 804	1612 1763 2036 612	0.22,3
	0 3 2882 0 4 6804 0 5 3620 0 5 3620 0 7 3540	2882 6655 3825 1553	1.0000 0.5000 0.5000 1.0000	12 12 12 12 12 12 12 12 12 12 12 12 12 1	00000	257 349 293 679	253 407 342 650 785	1.0000 0.0000 0.5000 0.5000	5 1	112	1741	55 1755 1755	0.1012 0.4217 0.1542 0.8663			10	1261 5177 1263 1155	1116 1260	0.5344 0.7351 0.6136 0.5.14
	0 8 1597 0 9 1393 0 10 1040 0 11 1445	1594 146 1136 1451	1.0000	12	0 -10	250 340 2965 1408	360 483 2740 1424	0.5000	1555	-1200	755 663 725	22335	0.055			12	1392 131, 547 1302 471	1315 413 1224 46,	5.5664 5.767 5.767 6.4675
	0 -1 440 0 -2 2905 0 -3 2557 0 -4 2557	430 3207 980 2052	1.0000 1.0000 0.5000 0.5000	000	1 8 9	1017 2379 1125 2186	865 2455 1116 2335	0.7330	6 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3773 8570	357 759 963 825	0.5697 0.0155 0.1554 0.4675		1 2 2	233	564 564 565	310L 535 4752 2553	0.4,67 5.5-36 6.076 0.269 0.616
*****	0 -6 2990 0 -7 2135 0 -8 2616 0 -9 256 0 -10 1661	266 2131 240 220	0.5000 1.0000 0.5000 1.0000 0.5000	0000	1 12	960 1865 1269 806 618	894 1842 1142 654 817	0.995E 0.425 0.5650 0.5038	6 1	10	568 366 452 1157	574 420 435 1077	0.3462		~~~~~~	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	461 2504 1565 1643	2722 15+6	0.3350 0.4055 0.3507 6.5530
3333	0 -11 2891 0 -12 595 0 -13 1764 0 -14 1267 0 -15 462	504 38 178 1320 57	0.5000 1.0000 0.5000 1.0000	0	1 18	440 1998 2054 2055 1728	2050 2325 2290 1691	0.5562 0.8831 0.4802 0.2347 0.3303	6 1 1 6 1 1 6 1	15 1 2	441 735 456 1506	309 621 301 1774 767	0.4390 0.1404 0.3456 0.1539		2222	120115	57725	1476 6407 251	0.5201 0.762-
	0 -17 1000 0 0 412 0 1 2710 0 2 6365 0 3 3755	100 48 261 656 365	1.0000 0.5000 1.0000 1.0000	1	1 6 1 7 1 8 1 9	2477 1039 2918 1888 2040	2756 596 3268 2117 2067	0.9818 0.7540 0.7521 0.9014 0.5015	6 1 6 1 6 1 6 1	24264	1202 625 1141 534 1654	1165 548 1158 597 1556	0.0068 0.7849 0.6033 0.0460 0.5664		22.22	1775	446 1600 2206 331c 3535	2,0 172+ 2251 3065	0.0325 0.4263 0.4551 0.1111
	0 5 2855 0 6 3991 0 7 2237 0 8 796	283 3680 2200 784	1.0000 0.5000 0.5000 1.0000	1	1 12	2101 1328 1648 1068	2131 1157 1603 1107	0.2627 0.2958 0.1160 0.4319	6 1 6 1 6 1 6 1	-8 -9 -10 -11 -13	1675 1671 2572 2002 250	1565 1978 2631 3155 225	0.3509 0.140 0.4717 0.1355 0.2755		2222	-10	3665 1390 1514 1951 110	3050 1352 1506 1536	0.1103 0.2103 0.2073 0.2075
	0 9 99 0 10 700 0 11 1317 0 -1 1350 0 -2 1480	759 1331 1157 1521	0.5000		1 10	*16 303 3615 3114	327 337 338 3061	0.0350	6 1 6 1 6 1	-14 -15 -16 -17 -18	1684 1370 345 321 711	1667 1204 154 312 675	0.0115 0.7771 0.5022 0.5480		~~~~~	-12	1318 655 1477 553	1316	0.17 0.35e 0.12
	0 -1 1375 0 -5 344 0 -6 2888 0 -7 794	125 270 2679 76	1.0000		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1497 1149 2196 1247	1676 1031 2128 1216	0.4355	6 1 7 1 7 1 7 1	-19	1011	2003 1003 1145 1516	0.75+0 0.8852 0.5487 0.156	22	~~~~~	-16	436 7541 2036 2130	657 2056 2057	0.72- 0.5305 0.5-2 0.52-3 0.6722
	0 -9 1950 0 -10 1191 0 -11 735 0 -12 1827 0 -13 1076	1861 1261 833 1741	0.5000	1	1 -12 1 -13 1 -14 1 -15	1535 1812 1501 1690 610	1526 1705 1483 1668 652	0.3435 0.2213 0.2402 0.4091 0.9717		56.8	1116 515 518 546	1140 356 451 447	0.2769 0.1002 0.0251 0.2523	222		~* 5-01-0	1015 5,5 1055 2376	621 107- 2425	0.170
555	0 -14 1402 0 -15 572 0 0 1281 0 1 1333 0 2 6455	136 671 1272 1314	1.0000 1.0000 1.0000 0.5000 1.0000	1	1 -17 1 -18 1 -19 1 -20 1 -0	550 453 632 402 1268	505 350 553 365	0.6242 0.5988 0.0045 0.4522 0.6209		12124-12	514 36-/ 501 1060	505 571 495 1010	0.5-17 0.9204 0.7024 0.6545	2222	***	10	1777	17-35 200 1797 2050	0.512
55555	0 3 195 0 4 677 0 5 974 0 6 1516 0 8 100	1971 702 1020 1311	1.0000 1.0000 0.5000 1.0000	22 22 2	1 3 5 6	1905 5561 3244 2718	2125 5397 2638 2880 2584	0.3329 0.0950 0.3859 0.1513 0.4128	7 1	-6-7-8	563 517 1276 2302 1015	504 587 1234 2098	0.5656 0.4780 0.4362 0.1505 0.2715	2222	~~~~~	17 16 19	1296 325 326 253	1312 221 256 232	0.51c 0.55yt 0.957c 0.01-2
55555	0 10 711 0 11 463 0 12 454 0 15 815 0 -1 2061	670 471 301 78 2002	1.0000 0.5000 0.0000 0.5000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 7 1 8 1 9 1 10 1 11	2617 634 1117 1431 1712	2298 538 1028 1517 1805	0.8507 0.6051 0.7715 0.0277	7 1 7 1 7 1 7 1 7 1	-10 -11 -12 -13	2330 1115 1243 824 1348	2129 1073 1134 792 1322	0.1315 0.0611 0.6269 0.0143 0.6005	****	~~~~~	79797	2930 2215 6109 8628 1901	2331 1711 5635 415- 1-44	0.5875
20000	17	2970 1320 680 351	1.0000 1.0000 0.5000	2222	1 13	1168 1105 637 330	1160 1195 1145 583 351	0.086y 0.3363 0.0040 0.04y1	7 1 7 1 7 1 7 1	-14 -15 -10 -17 -18	509 848 652 518 373	446 704 550 516 306	0.6151 0.0454 0.5315 0.0582 0.2763	2222	****	-8 -10 -11 -12	2423 3285 2206 263 277	2169 3075 2171 1035 213	0.410E 0.410E 0.53F2 0.7532 0.1454
2222	0 -8 290 0 -9 75 0 -10 296 0 -11 120 0 -12 58	287 80 303 121	1.0000 1.0000 1.0000 0.5000		11119	4556 4964 1687 2385	5242 6074 1726 2606	0.9279 0.9279 0.1059 0.7723	7 1 8 1 8 1 8 1	-19	343 1560 1141 597 1070	252 1565 12:00 557 1026	0.4735 0.7520 0.8735 0.5768 0.9220	****	****	13 15 16 17	614 1363 81, 602 465	5.51	0.7711 0.3700 0.462 0.5640 0.0610
~~~~~	0 -17 75 0 -17 75 0 119	1210	0,5000 0,5000 1,0000		i -6 1 -9 1 -10	4917 613 2511 1811	3621 517 2604 1880	0.3600	6 1 8 1 8 1	567	562 516 253	48) 482 167 468	0.3929	2333	~~~~~	-10	510 T23 461 3483	63-9 4-92 3:01 2557	0.0515 0.0266 0.3236
****	0 2 121 0 3 143 0 4 120 0 6 204	110	9 0.5000 6 0.5000 0 1.0000 7 0.0000 4 1.0000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 -12 1 -13 1 -14 1 -15 1 -16	853 1165 257 583 365	870 1291 191 720 347	0.9300 0.3462 0.9205 0.6034 0.1935	8 1 8 1 8 1 8 1 8 1	1197	386 1742 791 559 2226	550 1758 816 625 2199	0.3550 0.5383 0.0354 0.4766 0.2054		2222	5.076	1035 1041 2436 1693	1112 988 2265 16-0 516	0.3723 0.46-2 0.6148 0.0003
66666	0 8 52 0 10 62 0 11 57 0 12 49 0 13 45	61 66 60 50	5 0.5000 9 0.5000 0 0.5000 7 0.0000 4 0.5000		1 -17 1 -19 1 0 1 1 1 2	496 409 2107 662 3678	565 463 2072 565 3590	0.6895 0.0451 0.6216 0.2610 0.7827	8 1 8 1 8 1 8 1 8 1		1349 443 1389 1800 452	1955 473 1334 1729 446	0.0968 0.1057 0.7259 0.6385 0.0368		****	10 11 12	571 2260 1207 1034	652 2261 1255 1073 454	0.1007 0.04-5 0.5816 0.75-6
6666	0 -1 41 0 -2 149 0 -3 114 0 -4 65 0 -5 30	107	9 1.0000 2 1.0000 6 0.5000 5 1.0000 0 0.5000	\$ \$ \$ \$ \$ \$ \$	1 567	1628 1882 2530 2930 1144	1837 1730 2205 2622 1056	0.0552 0.8846 0.5993 0.3004 0.2629	8 1 8 1 8 1 8 1 8 1	-11 -12 -13 -15	1326 364 251 463 510	1162 371 259 509 501	0.6197 0.0454 0.2344 0.5247 0.0966		****	14 15 16 17	63 689 615 5101	510 2 1 10	0.4451 0.1550 0.4515 0.36-2 0.1969
	0 -6 155 0 -7 155 0 -8 55 0 -10 84		0 1.0000 1.0000 5 1.0000 0 1.0000 6 0.5000	5	1 8 1 9 1 10 1 11 1 12	1463 1373 1052 563 1127	1461 1416 1020 633 1168	0.3036 0.3213 0.7247 0.6757 0.6625	8 1 8 1 8 1 9 1 9 1	-16 -17 -18 -1	470 389 1607 1607	391 262 346 1626	0.3333 0.3055 0.066 0.1105 0.2247				1525 2665 1733 1063 1713	1912 2709 1931 1051 1757	0.0111 0.3111 0.3450
6 6 7 7	0 -12 145 0 -13 70 0 -14 43 0 0 157 0 1 50	145 5 77 0 46 15 0	5 0,5000 5 0,5000 5 0,5000 0 0,5000 1 1,0000	****	24.797	452 513 4474 1567 3754	403 443 4842 1753 4740	0.7861 0.5815 0.6362 0.6164 0.6716	y 1 7 1 7 1 7 1 7 1	42459	903 1403 1897 1607 903	-26 1581 1945 1519 768	0.2855 0.0447 0.6361 0.7761 0.632b		2222	-8 -10 -11 -12	51 1675 422 768	26 75 75 75 75 75 75 75 75 75 75 75 75 75	0.7.54 0.4151 0.4371 0.5126 0.6070
7 7 7 7	0 2 109 0 3 170 0 7 37 0 9	8 120 1 170 7 35	0.5000 0.5000 5 0.5000 7 1.0000 2 0.0000	3.333	19979	1653 3827 1952 1672	1624 4076 2151 1505	0.0672 0.2864 0.2422 0.3996	7 7 7 7 7	-7 -8 -10 -11	1951 1007 932 571 705	1886 1014 796 509 634	0.1297 0.5796 0.7488 0.7488		*****	-13 -14 -15 -16 -10	516 550 235	4562	0.1604 0.4751 0.0465 0.1606 0.0025
ł	0 13 60 Q -1 123	3 123	0 1.0000	3	i -10	3305	3174	0.6331	; i	-15	-04	433	0.1971	;	2	-20	237	14.	0.6-13

## SIXTEN ABRAHAMSSON AND IRMIN PASCHER

Table 4 (cont.)

いないのいいのいいのいいのいいのいいのいいのいいのいいのいいのいいのいいのいいの
12.22.22.23.22.24.22.24.22.24.22.24.25.24.25.24.24.24.24.24.24.24.24.24.24.24.24.24.
**************************************
auauuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
12225222222222222222222222222222222222

.



the asymmetric glycerol carbon atom. The differences in conformation are illustrated in Fig.3 showing projections down the C(2)–C(3) and C(2')–C(3') bonds. The indicated dihedral angles  $\varphi_{O(2)O(3)}$  and  $\varphi_{O(2)C(1)}$  for one molecule are 71° and 179° respectively. The corresponding angles for the other GPC molecule of the asymmetric unit are 61° and 63°. In the first case a *gauche-trans* conformation has thus been adopted and a *gauche-gauche* conformation in the latter case. These arrangements also make possible an effective hydrogen bond system similar for both independent molecules.

As observed in 2-aminoethanol phosphate (Kraut, 1961) a *gauche* conformation is adopted about the bond between the two ethyl carbon atoms of the nitrogen



Fig.2. Spatial drawings of the two GPC molecules of the asymmetric unit. All atoms except hydrogen atoms of one of the two molecules are marked with double contours.



Fig. 3. Conformation of the independent GPC molecules as seen along the C(3)-C(2) and C(3')-C(2') bonds. C(2) and C(2') represent the asymmetric carbon atoms of the molecules.



Fig.4. Conformation of the two GPC molecules of the asymmetric unit as seen along the C(4)-C(5) and C(4')-C(5') bonds.



Fig. 5. Illustration of the molecular packing of GPC as seen along the b axis. Dashed lines indicate hydrogen bonds. For key to atoms see Fig. 2.

base. The dihedral angles  $\varphi_{O(4)N(1)}$  and  $\varphi_{O(4')N(1')}$  as seen along the C(4)–C(5) and C(4')–C(5') bonds (Fig. 4) are 72° and 75° respectively.

Bond distances and angles for the two independent molecules of the asymmetric unit are given in Tables 5 and 6. Standard deviations in distances and angles are also listed. They were calculated according to Ahmed & Cruickshank (1953) and Darlow (1960). The maximum deviations from the mean values of identical bonds of the two molecules of the asymmetric unit are, except in a few cases, smaller than  $3\sigma$ . The standard deviations are, however, slightly underestimated as they have been calculated from the diagonal elements of the inverse least-squares matrix.

The distances in the phosphate group agree well with the recent analyses of adenosine-5'-phosphate (Kraut & Jensen, 1963) and di-*p*-chlorophenyl hydrogen phosphate (DPDPHP) (Calleri & Speakman, 1964). In their paper, Calleri & Speakman surveyed the P–O distances in sixteen earlier accurate structure determinations and calculated that the mean value of the sum of the four P–O distances of the phosphate group was  $6 \cdot 177 \pm 0.030$  Å. This sum should also be almost constant according to Cruickshank (1961). The value for adenosine 5'-phosphate is  $6 \cdot 185$  Å, for DPCPHP  $6 \cdot 151$  Å, and for the two GPC molecules  $6 \cdot 196$  Å and  $6 \cdot 184$  Å.

It is often stated in the literature that each molecule of GPC is associated with a molecule of water. This is obviously not the case in this structure. The zwitterion character of the molecule is evident from the two equivalent short distances between the phosphorus atom and the unsubstituted oxygen atoms [O(5) and O(6)]. The corresponding O-P-O angle is larger in GPC (mean value  $121.6^{\circ}$ ) than adenosine 5'-phosphate (118°). The charge distribution is also different



Fig.6. Molecular packing of GPC as seen along the *a* axis. The hydrogen bonds forming the double layers are indicated as well as some of the shorter contacts between these layers. For key to atoms see Fig.2.

	Mole	cule 1	Mole	cule 1'
Bond	Length	σ	Length	$\sigma$
P(1) -O(3)	1·580 Å	0∙0065 Å	1·606 Å	0∙0053 Å
-O(4)	1.624	0.0037	1.626	0.0035
-O(5)	1.497	0.0065	1.467	0.0052
-O(6)	1.496	0.0047	1.484	0.0041
N(1)-C(5)	1.510	0.0095	1.487	0.0100
-C(6)	1.480	0.0105	1.516	0.0111
-C(7)	1.540	0.0076	1.476	0.0083
-C(8)	1.522	0.0069	1.529	0.0082
O(1)-C(1)	1.449	0.0077	1.435	0.0077
O(2) - C(2)	1.433	0.0073	1.405	0.0073
O(3) - C(3)	1.390	0.0082	1.457	0.0068
O(4) - C(4)	1.418	0.0093	1.442	0.0083
C(1)-C(2)	1.538	0.0089	1.532	0.0067
C(2) - C(3)	1.553	0.0127	1.498	0.0102
C(4) - C(5)	1.510	0.0080	1.534	0.0080

 
 Table 5. Bond distances with standard deviations for the two independent molecules of the asymmetric unit

Table 6. Bond angles with standard deviations in degrees for the two independent molecules of the asymmetric unit

	Moleci	ule 1	Molecu	cule 1'		
Angle	$\theta$	$\sigma(\theta)$	$\theta$	$\sigma(\theta)$		
O(3)-P(1) -O(4)	104·02°	0·32°	102·22°	0·27°		
-O(5)	112.17	0.30	110.09	0.26		
-O(6)	105.68	0.30	105.48	0.25		
O(4) - P(1) - O(5)	104.15	0.27	104.75	0.23		
-O(6)	109.01	0.22	109.91	0.21		
O(5)-P(1)-O(6)	120.62	0.38	122.62	0.31		
C(5) - N(1) - C(6)	113.14	0.50	113.52	0.51		
-C(7)	109.92	0.60	112.86	0.66		
-C(8)	106.34	0.20	107.16	0.56		
C(6) - N(1) - C(7)	111.01	0.52	107.03	0.57		
-C(8)	107.70	0.61	105.58	0.67		
C(7) - N(1) - C(8)	108.50	0·49	110.46	0.58		
P(1) - O(3) - C(3)	115.80	0.49	118.56	0.37		
P(1) - O(4) - C(4)	118-27	0.37	119.13	0.34		
O(1)-C(1)-C(2)	111.65	0.26	107.58	0.45		
O(2)-C(2)-C(1)	107.50	0.53	111.47	0.46		
-C(3)	107.57	0.47	106.96	0.46		
C(1)-C(2)-C(3)	109.62	0.28	114.01	0.51		
O(3)-C(3)-C(2)	109.13	0.28	108.44	0.45		
O(4) - C(4) - C(5)	112.69	0.65	110.78	0.57		
N(1)-C(5)-C(4)	115.33	0.47	115.04	0.47		

in the phosphate groups of the two compounds as one of the remaining oxygen atoms in adenosine 5'-phosphate is bonded to a hydrogen atom.

The molecular packing is illustrated in Figs. 5 and 6. There are no intramolecular hydrogen bonds. In both independent molecules the glycerol oxygen atom O(1)forms a hydrogen bond of 2.70 Å with O(6) of the phosphate group of a symmetry-related molecule. The other hydroxyl oxygen atom O(2) of the two glycerol residues takes part in a hydrogen bond (2.70 Å) almost parallel to the b axis with O(5) of a b-translated molecule. These hydrogen bonds link together equivalent molecules into infinite spirals in the **b** direction. This also conforms with **b** being the needle direction. There are no hydrogen bonds between the two molecules constituting the asymmetric unit.

The structure can also be described as being built up of bimolecular layers parallel to the *ab* plane of one type of molecule alternating with double layers of molecules of the other type. These layers show fairly smooth boundary surfaces towards each other. Some of the shorter interlayer distances are indicated in Fig. 6.

The positively charged nitrogen atom is roughly tetrahedrally surrounded by oxygen atoms. The two shortest N–O distances are between N(1) and the negatively charged oxygen atoms O(6) and O(5') ( $3\cdot81$  Å and  $3\cdot88$  Å). These atoms lie very close to triad axes of the tetramethylammonium tetrahedron. One hydroxyl oxygen atom O(1) is also fairly close to N(1) ( $3\cdot90$  Å), whereas the fourth oxygen atom O(6) of a symmetry-related molecule is further away ( $4\cdot44$  Å). The packing around N(1') seems less effective as the corresponding shortest N–O distances are about 0·3 Å longer here.

We wish to thank Prof. S. Ställberg-Stenhagen, Prof. E. Stenhagen, Dr S. Aleby and Dr K. Larsson for valuable discussions. Financial support has been obtained from the Swedish Natural Science and the Swedish Medical Research Councils and the U.S. Public Health Service (GM-11653).

#### References

- Abrahamsson, S. & Maslen, E. N. (1963). Z. Kristallogr. 118, 1.
- ABRAHAMSSON, S., ALEBY, S., LARSSON, K., NILSSON, B., SELIN, K. & WESTERDAHL, A. (1965). Acta Chem. Scand. 19, 758.
- AHMED, F. R. & CRUICKSHANK, D. W. J. (1953). Acta Cryst. 6, 385.

BAER, E. & KATES, M. (1948). J. Amer. Chem. Soc. 70, 1394.

CALLERI, M. & SPEAKMAN, J. C. (1964). Acta Cryst. 17, 1097.

CRUICKSHANK, D. W. J. (1961). J. Chem. Soc. p. 5486.

- DARLOW, S. F. (1960). Acta Cryst. 13, 683.
- KRAUT, J. (1961). Acta Cryst. 14, 1146.
- KRAUT, J. & JENSEN, L. H. (1963). Acta Cryst. 16, 79.
- MILLS, O. S. & ROLLETT, J. S. (1960). In Computing methods and the Phase Problem in X-Ray Crystal Analysis, p. 107. London: Pergamon Press.
- TATTRIE, N. H. & MCARTHUR, C. S. (1958). *Biochem. Prep.* 6, 16.